Scientific Notation and Significant Figures

Writing Numbers in Scientific Notation

- 1. Move the decimal point to the **right** or the **left** in order obtain only **one leading digit**.
- 2. If the decimal is moved to the **right**, then **subtract** from the **power of 10** the number of times you moved the decimal.
- 3. If the decimal is moved to the **left**, then **add** to the **power of 10** the number of times you moved the decimal.

Example: $1,530 = 1.53 \times 10^3$ or $.00153 = 1.53 \times 10^{-3}$

Significant Figures

Using significant figures (sig figs) allows scientists the ability to round off calculations without compromising the integrity of their research.

Remember a calculation is only as good as the measurements, a measurement only as good as the tool and a tool is only as good as the person using it.

Recognizing Significant Figures

- 1. All non-zero digits are significant.
- 2. All zeroes between sig figs are significant.
- 3. Leading zeroes are never significant.
- 4. Trailing zeroes are significant if there is a written decimal point.

Temperature Conversions

$$^{\circ}F = 1.8 \,^{\circ}C + 32$$
 $^{\circ}C = \frac{^{\circ}F - 32}{1.8}$ $K = ^{\circ}C + 273$

"Self-discipline is the ability to make yourself do what you should do, when you should do it, whether you feel like it or not."
--Elbert Hubbard